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Abstract 

The dinuclear complex Ru2(CO)6(/~-PCy2)2 ( C y -  C~ciohex~! was studied in the solid state by X-ray crystallography and in 
solution by NMR spectroscopy. The variable-temperature "C and " P NMR studies reveal two interconverting isomers to be present in 
solution, in contrast to the unique isomer found in the crystal. 
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1. Introduction 

The dinuclear phosphide-bridged complex 
Ru2(CO)6(/~-PPh2) 2 has been known since 197211]; its 
structut~ was ducidated in 1990 [2], A serious draw- 
back in investigating the chemistry of this compound 
was its poor accessibility, all synthetic methods reported 
before 1992 gave only low yields, or even trace amounts 
[I--8]. Four high-yield routes w~,re developed in 1992: 
whereas Mathieu and coworkers obtained Ru 7~(CO)6(/x- 
PPh2) a from Rua(CO)ta and PaPh,~ [9], we found this 
compound to be easily accessible from Ru3(CO),2, 
HPPh 2 and CO, from Ru.a(CO)a( ~-PPh2)2(p,-H) 2 and 
CO, and from Ru2(CO)4(p.-OOCEt)2(PPh2H) 2 and CO 
[10]. The last method can easily be extended to other 
phosphido der ivat ives '  from Ru2(CO)4(p,-  
OGCEt)2(PCY2H) 2 and carbon monoxide we obtained 
the new cyclohexyl analogue Ru2(CO)6(~-PCY2) 2 (1) 
[11] which, in contrast to the phenyl derivative, ap- 
peared to exist in two isomeric forms in solution, as 
shown by the .alp NMR spectra [ 11 ]. 

In this paper we report a single-crystal X-ray struc- 
ture analysis of 1, a,,d a detailed analysi:~ of the n3C 
NMR spectra and e, the variable-temperature at p spec- 
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tra, as well as the kinetic and thermodynamic parame- 
ters of the equilibria between the two isomers of I in 
solution. 

2. Experimental 

2.1. Synthesis 

Complex 1 was synthesized as described previously 
[111. 

2.2. Spectroscopy 

aJc and .+Vp NMR spectra were measured on Bruker 
AMX 400, AMX 500, or AMX 600 spectrometers, at 
100.62 (223K, 243K, 273 K and room temperature), 
125.77, 150.90MHz (n3C) and 162.0MHz (31p). The 
attributable 3'C NMR signals are given in Section 3 :~nd 
Table 2. 

2.3. X-ray analysis 

Suitable crystals of 1 were grown from pentane as 
pale green blocks. Intensity data were collected at room 
temperature on a Stoe AED2 four-circle diffractometer 
using Me Ka  graphite monochromated radiation (A = 
0.71073/~) with to-O scans in the 219 range 3-55 °. 
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Fig. !, Molecular structure of Ru2(CO)6(~t-PCY2) 2 (1). ZOgTi~ [14] 
drawing (ellipsoids with 30% probability; hydrogen atoms removed 
for clarity). 

The structure was solved by direct methods using the 
program StlELXS-86 [ 12]. The refinement and all further 
calculations were carded out using SaF.LXt.-93 [ 13]. The 
H atoms were refined isotropically and the non-hydro- 
gen atoms anisotropically, using weighted full-matrix 
least squares on F 2. Crystal data for 1: C ~o H 4406P: Ru 2 , 
moaoelinic, space group. P21/c ,  a~9.674(1) ,  b ~  
20.276(2), c 17.042(I)A,/3--90.11(1) °, Z ~ 4 ,  7688 
independent reflections, 7677 observed reflections ( I  > 
2,7(I)), final R - 0.064, R,,. - 0.i08, goodness-of.fit 
1.09, residual density max./min. 0.633~ ~ 0.518¢ ~°  ~. 
Absorption coefficient ~ -  !.04ram ° ; no cotvection 
for absorption was applied. Selected bond distances and 
angles, and torsion angles are given in 1"able I. The 
molecular structure of I is illustrated in the ZORT~P [14] 
drawing, Fig. I. Full tables of atomic parameters and 
bond lengths and angles may be obtained from the 
Cambridge Crystallographic Data Centre, 12 Union 
Road, Cambridge CB2 lEg (UK) on quoting the full 
~umal citation. 

3.  R e s u l t s  a n d  d i s c u s s i o n  

In order to determine the conformation of the four 
cyclohexyl rings of complex Ru2(CO)6(,tt-PCY2) 2 (1) 
in the solid state, an X-ray analysis was carried out. The 
molecular structure of 1 is displayed in Fig. 1. Selected 
bond distances, bond angles and torsion angles are 
given in Table 1. 

In the solid state, complex 1 has approximate C 2 
symmetry; its structure is analogous to the known phenyi 
complex Ru2(CO)6(/z-PPh2) 2 [2]. Each ruthenium atom 
is coordinated almost octahedrally. Each cyclohexyl 
ring adopts the 'chair' conformation, the four cycles 
being bound equatoriaily to the phosphorus atoms. The 
interatomic distance Ru-Ru is 2.845 A; this compares 
well with the same distance in the phenyl analogue 
(2.820A) [2]. The slight difference is probably due to 
the larger steric hindrance of the cyclobexyl groups. 
The angles Ru-P-Ru  vary between 52 and 53 °, the 
dihedral angle between the Ru 2 p planes is 68.7 ° (phenyl 
analogues: 75.1 ° [2]). 

As shown by the X-ray analysis, complex ! is sym- 
metrical with respect to the Ru-Ru bond; hence, only 
one 31p NMR signal is expected. However, the 3tp 
NMR spectrum measured at room temperature in d s- 
toluene reveals three broad s i s a l s  at 8--- 146.9, 139.7 
and 138.6. Furthermore, the "C NMR spectrum shows 
more than four distinct cyclohexyl signals at 8 ~ 56.5 
(C-la), 35.2 (C-2a), 28.1 (C-3a), and 26.3 (C-4a) 
(Scheme !), as well as three carbonyl signals at 8 
201.3, 200.9, ~nd 199.2. The results indicate that 1 
exists in solution as an equilibrium mixture of two 
species, one of which has the same symmetrical contbr- 
marion of that in the solid state. 

~'P NMR measurements were obtained over the tem- 
perature range 203-353 K. The three broad 3,p NMR 
signals observed at room tem~rature gradually broad- 
ened on increasing the temperature and coalesced at ca. 
350K to one signal at 8 ~ 142. At 273 K the three 
signals were shifted slightly downfield and became 
sharper (a singlet at 8 ~ 139.5 and two doublets at 

Table ! 
important distances (.~). bond angles (deg) t~nd torsion angles (dog) of Ru ~(CO)6( ~-PC'y2)~ (!) 
Ru(1)~Ru(2) 2.8452(8) Ru(2)=C(28) 
Ru(1)=P(1) 2.355(2) Ru(2)-C(29) 
Ru(I )~P(2) 2.379(2) P(I)-C(I) 
R~2)=P(I) 2.379(2) P(1)=C(7) 
Ru(2)~P(2) 2.355(2) P(2)-C(I 3) 
I~2)~C(19) 1.853(8) P(1)-Ru(1)-P(2) 
Ru(1)-Ru(2)~P(1) 53,45(5) Ru(1)-Ru(2)~P(1)-C(1) 
Ru(1)=Ru(2)-P(2) 52.66(5) Ru( I)-Ru(2)-P(I)-C(7) 
Ru(1)-P(1)=Ru(2) 73.89(6) Ru(2)-Ru(1)-P(2)-C(13) 
R~I).-IK2)=Ru(2) ?3.89(6) Ru(2)-Ru(1)-P(2)-C(19) 

1.907(9) 
!.914(9) 
1.849(8) 
i .855(6) 
i .875(8) 

82.5?(7) 
- i ! 2.1(3) 

| ! 5.9(3) 
I ! 5.5(3) 
112.1(3) 
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Scheme !. Proposed equilibrium for the isomerization of complex 1. Isomer la: four equatorial rings; isomer lb: one axial and three equatorial 
rings. 

8 -- 147.0 and 138.0); no radical difference in the chem- 
ical shift and the shape of these signals was observed 
down to 203 K. 

Examination of a tridimensional bail-and-stick model 
of I suggested a spatial constraint between both Cy(1) 
and Cy(Ill) substituents (Fig. 1). Transformation of 
either of these groups to an axial position could relieve 
this constraint and thus lead to a number of isomers. As 
one or more of the cyclohexyl groups changes from an 
equatorial to an axial position, the symmetry of the 
molecule is perturbed, resulting in chemically non- 
equivalent cyclohexyl ~+C signals, and five sets of '3C 
signals for each C-l, C-2, Co3 and C-4 are expected; 
one set for the symmetrical isomer (namely !a), and the 

other four for the equilibrating, unsymmetrical isomer 
(namely lb) (Scheme I). This interpretation is in accor- 
dance with the IH- and a~p. decoupled ~3C NMR 
spectra at -30°C ,  as well as with a heteronuclear 
J-resolved experiment which, altogether, revealed 20 
~3C signals in the cyclohexyi region, a missing cross- 
peak at 8 = 43 not being visible under the recording 
conditions (Fig. 2). In determining which isomers were 
present, the number of C-3 B3C signals from the equato- 

Pn~y ~roup was first identified. The rially disposed 2~ 
chemical shift -+ coupling of phosphono- 
cyclohexanes 2a and 2b (Fig. 3) with known stereo- 
chemistry of the C(I ) -P  bond, have been measured 
[15-17]. It was found that the C-l, C+3 and C-5 S~C 
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Fig. 2. 13C, IH J-resolved NMR spectrum of I (100MHz, CDCI~, 243 K). 
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Table 2 
Assignment of the L~C NMR signals to both isomers of I (8, see 
Scheme I) 

C t C 2 C -~ C 4 

56.5 35.2 28.1 26.3 
54.4 27.3 
42.8 27.6 
46.0 26.7 
32.2 

Fig. 3. Couple of isomeric phosphonocyciohexanes [15-17]. Isomer 
2a: axial P-C bond; isomer 2b: equatorial P-C bond. 

signals fo r  2a were slightly more upfield than those of 
2b. The ~J(13C-~ZP) for the axially disposed PCy 2 
group of 2a was only 0.6Hz, while the equatorial 
counterpart 2b displayed a comparatively strong W 
coupling of 16.2 Hz. 

Comparison of the :H-decoupled t~C NMR and t H-, 
°~P-decoupled ZaC NMR spectra reveals that four sig- 
nals have high ~J(t~C-~tP) values: 8 =  28.1 (d, J =  
10.THz), 8 ~  27.6 (d, J =  10.8Hz), 8=,, 27.3 (d, J =  
12.4Hz), and 8 ~, 26.7 (d, J = 10.0Hz), indicating that 
the comozmation proposed for isomer lb  is correct. The 
assignment of the four C-3 carbons is as follows: 8 
28.1 to C-3a, based on the room temperature ~C NMR 
measurement: 8 -  27.3 to Co3b, which has the largest 
~d(t~C~tP) value and is oriented away from the other 
three Cy groups, allowing the maximum angle between 
Co3 and P: 8 - 2 7 . 6  to Co3c, and 8 -  26.7, as being 
shielded by the cycle III I~ assigning the Col chemical 
shifts for Ib, both hetero,uclear Joresolved and triple 
resonance ~C NMR spectra were analysed. "H~e follow° 
lag CH reso,.'mt'es wetx found: 8~ 54.4 (d, J ~  
31.THz), 46.0 (d, d ~, 8.1Hz), 42.8 (s), and 32.2 (d, 
J - 8 . 3 H z ) .  The multiplicity can M attributed to 

3j(t3C_ 3t p) ,  following the C - P - R u - P  path. Thus C- I b 
and C-Id are expected to have a pseudo W conforma- 
tion, while no such conformation was indicated for 
C-lc. Following this argument, the signal at 8 = 54.4 is 
attributea to C- I b, that at 6 = 46.0 to C- id, and 8 = 42.8 
to C-Ic. Finally, the signal at ,$ = 32.2 is assigned to 
C-le. The assignment of the C-2 signals was based on 
the coupling constants tJ(:aC-~H) derived from the 
J-resolved experiments, and these assumptions could 
not be verified by other NMR experiments. The C-2 
carbons from equatorially disposed cyclohexyls (i.e. 
C-lb-d) ,  8 = 36.3 (132 Hz), 3L7 (130Hz) and 31.7 
(129.2Hz) are assumed to have virtually the same 
:J(L~C-tI-l) values. In contrast, the C-2. ~ signal is ex- 
ac t ed  at 8 = 3 3 . 9  (121.4Hz), based on its lower 

I1 J ( C - / H )  value. Furthermore, all three proposed C-2 
signals appear as doublets of the same intensity having 
J( f - '  P) values of around 4Hz, whd¢ the proposed 

C-,~e stgmai :s a sharp smglet. The remaining ~C signals 
at ,'~- 28,3, 28.0, 25.9, 25.7, 25.6 and 24.4, account for 
the Co3e and Co4b~e eyclohexyl carbons. Table 2 shows 
a summary of the a'~C assignments of the cyclohe~yl 
carbons. 

A ~a PoNOESYTP [18] cxl~riment at 243 K (CDCIo~) 
showed an exchange between the ringlet at 8 ~ 118.5 
(isomer la) and the two doublets at 8 ~  126.1 and 

-,~-,7~ -217~:0 ,15  

AH~,~ ~ ~3 36 • 03kJ ,rnor ~' 

A $ ~  ,, 4 8~ = 151J' tool 

• -1 92~0 18kJ,mol 

'- ~ -  (OChRu( - , - / nu (COh  

\ a  / 

Scheme 2, Isornerit~tion In -* Ib  (rate constant k~ ), and intramolecular P exchange in isomer Ib  (rate constant k 2 ). 
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Table 3 
Observed rote constants for isomerization ! a ~ I b  (k~) and the 
intramolecular P exchange in l b  (k 2) 

T / K  k I / s -  i k 2 / s -  l 

253.2 ~56 
313.2 379.9 ! i36 
232.2 1272 2516 
333.2 1702 4440 
343.2 2131 9147 
353.2 3718 44826 

[P(la),P~(lb)] = [P(la),P2(lb)] = k,, [P~(lb),P(la)] = 
[ P ~ ( l b ) , P ( l a ) ]  = k ~ / 2 K ,  [ P 2 ( l b ) , P ~ ( l b ) ]  = 
[Pl( lb) ,P2(lb)]=k2,  where k I and k 2 are the rate 
constants of isomerization la- - ,  lb  and of the intra- 
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Fig. 4. V{ll~iit|)leqellll)~l~ltlllt'¢ Hip NMR :~i|}¢elri! of 1, (it) Me{isllred 
(d~otohlene. 162 Ml=lz). (b) Calculated: SI~JL program [19 ~23]. 

117.5 (isomer lb). and also I~tween the doublets due to 
the two non-equivalent P-atoms of lb. The population 
ratio K = [ l b ] / [  la] was calculated from the integrals of 
the corresponding :,Dp signals between 193 and 323K, 
and a linear regression of In K vs. 1 / T  gave the thermo- 
dynamic parameters reported in Scheme 2. Knowing the 
population ratio of the two isomers at each temperature, 
the calculated specm~ were fitted to the variable-temper- 
ature 3~p NMR spectra by line-shape analysis, using the 
following exchange matrix elements: [P(la),P(la)] = k I, 
[ P , ( l b ) , P , ( l b ) ]  = [P2(lb),P2(lb)] = - ( k , / 2 g )  - k 2, 

4 

~ 2 

1 

e 

2.9 3,0 3.1 ~.2 

1000 / T 

Fig. 5. Eyring ploL~: (a) k~, isomerization la-~, lb; (b) k2. intra- 
molecular P exchange in lb. 

Table 4 
Rate constants and associated kinetic parameters for k s and k 2 (data extrapolated to 298 K) 

kz9s/s~ i a Stos/J K- t mol- ' a H~98/kJ reel ~ ' aGIgs/kJ mol- 

Isomerization 174 :t: 24 -41  :t: 8 48 5:3 60.2:1:0.3 
P exchange 205 + 124 55 :t: 41 ~ 76 :!: 14 59.8 5:!.5 

a Estimated value. 
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molecubr P exchange in isomer lb respectively (Fig. 
4). The kinetic parameters are collected in Tables 3 and 
4 ~ were calculated by linear regression of the graphs 
In(k/T) vs. l / T  (Fig. 5). 

Process la  -* lb  is exothermic and about as rapid as 
the intramolecular site exchange in lb at 298 K. The 
t SC ~ spectra clearly show that the non-equivalence 
of the P ~ in lb  is due to one axial Cy group (not 
two) and three equatorial Cy groups (Fig. 2). Therefore, 
the isomerization process is due to the equatorial-axial 
conformation exchange of one Cy substituent. Examina- 
tion of the molecular structure of la (Scheme 1) sug- 
gests that the intramolecular process in lb  is a simulta- 
neous axial-equatorial conformation change on P-1 and 
the reverse conformation change on P-2 (Scheme 2). 

4. Conclusions 

The dinuclear complex Ru2(CO)6(/,t-PCY2)2 (I). 
which sh.~ws ~ all-equatorial arrangement of the four 
cyclohexyl substituents at the two phosphorus atoms in 
the solid state, isomerizes in solution by an intramolec- 
ular axial-equatorial rearrangement of one cyclohexyl 
ring, simultaneous at both phosphorus atoms. To our 
knowledge, this is the first example of such a simultane- 
ous rearrangement of cyclohexyl groups in a complex 
molecule. 
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